Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
EClinicalMedicine ; 68: 102383, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38545090

RESUMO

Background: SARS-CoV-2 binding to ACE2 is potentially associated with severe pneumonia due to COVID-19. The aim of the study was to test whether Mas-receptor activation by 20-hydroxyecdysone (BIO101) could restore the Renin-Angiotensin System equilibrium and limit the frequency of respiratory failure and mortality in adults hospitalized with severe COVID-19. Methods: Double-blind, randomized, placebo-controlled phase 2/3 trial. Randomization: 1:1 oral BIO101 (350 mg BID) or placebo, up to 28 days or until an endpoint was reached. Primary endpoint: mortality or respiratory failure requiring high-flow oxygen, mechanical ventilation, or extra-corporeal membrane oxygenation. Key secondary endpoint: hospital discharge following recovery (ClinicalTrials.gov Number, NCT04472728). Findings: Due to low recruitment the planned sample size of 310 was not reached and 238 patients were randomized between August 26, 2020 and March 8, 2022. In the modified ITT population (233 patients; 126 BIO101 and 107 placebo), respiratory failure or early death by day 28 was 11.4% lower in the BIO101 (13.5%) than in the placebo (24.3%) group, (p = 0.0426). At day 28, proportions of patients discharged following recovery were 80.1%, and 70.9% in the BIO101 and placebo group respectively, (adjusted difference 11.0%, 95% CI [-0.4%, 22.4%], p = 0.0586). Hazard Ratio for time to death over 90 days: 0.554 (95% CI [0.285, 1.077]), a 44.6% mortality reduction in the BIO101 group (not statistically significant). Treatment emergent adverse events of respiratory failure were more frequent in the placebo group. Interpretation: BIO101 significantly reduced the risk of death or respiratory failure supporting its use in adults hospitalized with severe respiratory symptoms due to COVID-19. Funding: Biophytis.

2.
Prog Neurobiol ; 232: 102560, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38097036

RESUMO

Damaged or dysfunctional neural circuits can be replaced after a lesion by axon sprouting and collateral growth from undamaged neurons. Unfortunately, these new connections are often disorganized and rarely produce clinical improvement. Here we investigate how to promote post-lesion axonal collateral growth, while retaining correct cellular targeting. In the mouse olivocerebellar path, brain-derived neurotrophic factor (BDNF) induces correctly-targeted post-lesion cerebellar reinnervation by remaining intact inferior olivary axons (climbing fibers). In this study we identified cellular processes through which BDNF induces this repair. BDNF injection into the denervated cerebellum upregulates the transcription factor Pax3 in inferior olivary neurons and induces rapid climbing fiber sprouting. Pax3 in turn increases polysialic acid-neural cell adhesion molecule (PSA-NCAM) in the sprouting climbing fiber path, facilitating collateral outgrowth and pathfinding to reinnervate the correct targets, cerebellar Purkinje cells. BDNF-induced reinnervation can be reproduced by olivary Pax3 overexpression, and abolished by olivary Pax3 knockdown, suggesting that Pax3 promotes axon growth and guidance through upregulating PSA-NCAM, probably on the axon's growth cone. These data indicate that restricting growth-promotion to potential reinnervating afferent neurons, as opposed to stimulating the whole circuit or the injury site, allows axon growth and appropriate guidance, thus accurately rebuilding a neural circuit.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Moléculas de Adesão de Célula Nervosa , Animais , Camundongos , Axônios/fisiologia , Cerebelo
3.
J Gerontol A Biol Sci Med Sci ; 78(Suppl 1): 44-52, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37325960

RESUMO

In recent years, several new classes of therapies have been investigated with their potential for restoring or improving physical functioning in older adults. These have included Mas receptor agonists, regulators of mitophagy, skeletal muscle troponin activators, anti-inflammatory compounds, and targets of orphan nuclear receptors. The present article summarizes recent developments of the function-promoting effects of these exciting new compounds and shares relevant preclinical and clinical data related to their safety and efficacy. The development of novel compounds in this area is expanding and likely will need the advent of a new treatment paradigm for age-associated mobility loss and disability.


Assuntos
Anti-Inflamatórios , Receptores Nucleares Órfãos
4.
J Neurosci ; 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35817577

RESUMO

Spreading depolarization (SD), usually termed cortical spreading depression has been proposed as the pathophysiological substrate of migraine aura and as an endogenous trigger of headache pain. The links between neurovascular coupling and cortical craniofacial nociceptive activities modulated by SD were assessed by combining in vivo local field potential (LFPs) recordings in the primary somatosensory cortex (S1) with functional ultrasound (fUS) imaging of S1 and caudal insular (INS) cortices of anesthetized male rats. A single SD wave triggered in the primary visual cortex elicited an ipsilateral, quadriphasic hemodynamic and electrophysiological response in S1 with an early phase consisting of concomitant increases of relative cerebral blood volume (rCBV) and LFPs. A transient hypoperfusion was then correlated with the beginning of the neuronal silence, followed by a strong increase of rCBV while synaptic activities remained inhibited.LFPs and rCBV recovery period was followed by a progressive increase in S1 and INS baseline activities and facilitation of cortical responses evoked by periorbital cutaneous receptive fields stimulation. Sensitization of cortical ophthalmic fields by SD was bilateral, occurred with precise spatiotemporal profiles and was significantly reduced by pre-treatment with a NMDA antagonist. Combined high-resolution assessing of neurovascular coupling and electrophysiological activities has revealed a useful preclinical tool for deciphering central sensitization mechanisms involved in migraine attacks.SIGNIFICANCE STATEMENTA crucial unsolved issue is whether visual aura and migraine headache are parallel or sequential processes. Here we show that a single spreading depolarization (SD) wave triggered from the primary visual cortex is powerful enough to elicit progressive, sustained increases of hemodynamic and sensory responses to percutaneous periorbital noxious stimuli recorded in S1 and Insular ophthalmic fields. Sensitization of cortical ophthalmic fields by SD was bilateral, occurred with precise spatiotemporal profiles and was significantly reduced by pre-treatment with a NMDA antagonist. Combined high-resolution assessing of neurovascular coupling and electrophysiological activities has revealed a useful preclinical tool for deciphering central sensitization mechanisms involved in migraine attacks.

5.
Bioengineering (Basel) ; 9(2)2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35200415

RESUMO

This study addresses brain network analysis over different clinical severity stages of cognitive dysfunction using electroencephalography (EEG). We exploit EEG data of subjective cognitive impairment (SCI) patients, mild cognitive impairment (MCI) patients and Alzheimer's disease (AD) patients. We propose a new framework to study the topological networks with a spatiotemporal entropy measure for estimating the connectivity. Our results show that functional connectivity and graph analysis are frequency-band dependent, and alterations start at the MCI stage. In delta, the SCI group exhibited a decrease of clustering coefficient and an increase of path length compared to MCI and AD. In alpha, the opposite behavior appeared, suggesting a rapid and high efficiency in information transmission across the SCI network. Modularity analysis showed that electrodes of the same brain region were distributed over several modules, and some obtained modules in SCI were extended from anterior to posterior regions. These results demonstrate that the SCI network was more resilient to neuronal damage compared to that of MCI and even more compared to that of AD. Finally, we confirm that MCI is a transitional stage between SCI and AD, with a predominance of high-strength intrinsic connectivity, which may reflect the compensatory response to the neuronal damage occurring early in the disease process.

6.
J Exp Med ; 219(3)2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35201268

RESUMO

Microglia, the main immunocompetent cells of the brain, regulate neuronal function, but their contribution to cerebral blood flow (CBF) regulation has remained elusive. Here, we identify microglia as important modulators of CBF both under physiological conditions and during hypoperfusion. Microglia establish direct, dynamic purinergic contacts with cells in the neurovascular unit that shape CBF in both mice and humans. Surprisingly, the absence of microglia or blockade of microglial P2Y12 receptor (P2Y12R) substantially impairs neurovascular coupling in mice, which is reiterated by chemogenetically induced microglial dysfunction associated with impaired ATP sensitivity. Hypercapnia induces rapid microglial calcium changes, P2Y12R-mediated formation of perivascular phylopodia, and microglial adenosine production, while depletion of microglia reduces brain pH and impairs hypercapnia-induced vasodilation. Microglial actions modulate vascular cyclic GMP levels but are partially independent of nitric oxide. Finally, microglial dysfunction markedly impairs P2Y12R-mediated cerebrovascular adaptation to common carotid artery occlusion resulting in hypoperfusion. Thus, our data reveal a previously unrecognized role for microglia in CBF regulation, with broad implications for common neurological diseases.


Assuntos
Circulação Cerebrovascular/fisiologia , Microglia/fisiologia , Acoplamento Neurovascular/fisiologia , Receptores Purinérgicos/fisiologia , Adulto , Idoso , Animais , Encéfalo/fisiologia , Sinalização do Cálcio/fisiologia , Doenças das Artérias Carótidas/fisiopatologia , Potenciais Evocados/fisiologia , Feminino , Humanos , Hipercapnia/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores Purinérgicos P2Y12/fisiologia , Vasodilatação/fisiologia , Vibrissas/inervação
7.
Elife ; 102021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34730085

RESUMO

Synaptic transmission, connectivity, and dendritic morphology mature in parallel during brain development and are often disrupted in neurodevelopmental disorders. Yet how these changes influence the neuronal computations necessary for normal brain function are not well understood. To identify cellular mechanisms underlying the maturation of synaptic integration in interneurons, we combined patch-clamp recordings of excitatory inputs in mouse cerebellar stellate cells (SCs), three-dimensional reconstruction of SC morphology with excitatory synapse location, and biophysical modeling. We found that postnatal maturation of postsynaptic strength was homogeneously reduced along the somatodendritic axis, but dendritic integration was always sublinear. However, dendritic branching increased without changes in synapse density, leading to a substantial gain in distal inputs. Thus, changes in synapse distribution, rather than dendrite cable properties, are the dominant mechanism underlying the maturation of neuronal computation. These mechanisms favor the emergence of a spatially compartmentalized two-stage integration model promoting location-dependent integration within dendritic subunits.


Assuntos
Cerebelo/fisiologia , Interneurônios/fisiologia , Transmissão Sináptica/fisiologia , Animais , Cerebelo/crescimento & desenvolvimento , Feminino , Interneurônios/metabolismo , Masculino , Camundongos
8.
Entropy (Basel) ; 23(11)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34828251

RESUMO

This work addresses brain network analysis considering different clinical severity stages of cognitive dysfunction, based on resting-state electroencephalography (EEG). We use a cohort acquired in real-life clinical conditions, which contains EEG data of subjective cognitive impairment (SCI) patients, mild cognitive impairment (MCI) patients, and Alzheimer's disease (AD) patients. We propose to exploit an epoch-based entropy measure to quantify the connectivity links in the networks. This entropy measure relies on a refined statistical modeling of EEG signals with Hidden Markov Models, which allow a better estimation of the spatiotemporal characteristics of EEG signals. We also propose to conduct a comparative study by considering three other measures largely used in the literature: phase lag index, coherence, and mutual information. We calculated such measures at different frequency bands and computed different local graph parameters considering different proportional threshold values for a binary network analysis. After applying a feature selection procedure to determine the most relevant features for classification performance with a linear Support Vector Machine algorithm, our study demonstrates the effectiveness of the statistical entropy measure for analyzing the brain network in patients with different stages of cognitive dysfunction.

9.
Sleep Med ; 82: 179-185, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33951603

RESUMO

BACKGROUND: Obstructive sleep apnea (OSA) is prevalent in older adults but still underdiagnosed for many reasons, such as underreported symptoms, non-specific ones because of the comorbidities and polypharmacy, or the social belief of sleep problems as normal with aging. OBJECTIVES: To identify salient symptoms and comorbidities associated with OSA, diagnosed by nocturnal respiratory polygraphy in geriatric inpatients. METHOD: We conducted a retrospective, cross-sectional study in a sample of 102 geriatric inpatients from a French Geriatric University Hospital. We reviewed medical records to collect demographic, medical information including comorbidities, the geriatric cumulative illness rating scale (CIRS-G), subjective sleep-related symptoms and data of overnight level three portable sleep polygraphy recording. RESULTS: Among classic OSA symptoms, only excessive daytime sleepiness (p = 0.02) and nocturnal choking (p = 0.03) were more prevalent in older inpatients with OSA (n = 64) than in those without (n = 38). The prevalence of comorbidities and mean CIRS-G scores were not different between groups except for the lower prevalence of chronic obstructive pulmonary disease and the higher level of creatinine clearance in OSA patients. Multivariate analysis showed OSA was associated with excessive daytime sleepiness (OR = 2.83, p = 0.02) in symptoms-related model and with composite CIRS-G score (OR 1.26, p = 0.04) in comorbidities-related model. CONCLUSIONS: Only excessive daytime sleepiness and comorbidity severity (composite CIRS-G score) were associated with the objective diagnosis of OSA, while other usual clinical OSA symptoms and comorbidities in geriatric inpatients were not. These findings emphasize the importance of excessive daytime sleepiness symptom, when reported in comorbid older patients, strongly suggesting OSA and requiring adequate nocturnal exploration.


Assuntos
Pacientes Internados , Apneia Obstrutiva do Sono , Idoso , Idoso de 80 Anos ou mais , Comorbidade , Estudos Transversais , Humanos , Estudos Retrospectivos , Apneia Obstrutiva do Sono/epidemiologia
10.
J Vis Exp ; (168)2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33720137

RESUMO

Functional ultrasound (fUS) imaging is a novel brain imaging modality that relies on the high-sensitivity measure of the cerebral blood volume achieved by ultrafast doppler angiography. As brain perfusion is strongly linked to local neuronal activity, this technique allows the whole-brain 3D mapping of task-induced regional activation as well as resting-state functional connectivity, non-invasively, with unmatched spatio-temporal resolution and operational simplicity. In comparison with fMRI (functional magnetic resonance imaging), a main advantage of fUS imaging consists in enabling a complete compatibility with awake and behaving animal experiments. Moreover, fMRI brain mapping in mice, the most used preclinical model in Neuroscience, remains technically challenging due to the small size of the brain and the difficulty to maintain stable physiological conditions. Here we present a simple, reliable and robust protocol for whole-brain fUS imaging in anesthetized and awake mice using an off-the-shelf commercial fUS system with a motorized linear transducer, yielding significant cortical activation following sensory stimulation as well as reproducible 3D functional connectivity pattern for network identification.


Assuntos
Mapeamento Encefálico , Encéfalo/diagnóstico por imagem , Neuroimagem Funcional , Imageamento Tridimensional , Rede Nervosa/diagnóstico por imagem , Ultrassonografia , Animais , Volume Sanguíneo Cerebral , Masculino , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica , Vigília
11.
Transl Psychiatry ; 8(1): 247, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30429456

RESUMO

The 22q11.2 deletion syndrome (22q11.2DS) confers high risk of neurodevelopmental disorders such as schizophrenia and attention-deficit hyperactivity disorder. These disorders are associated with attentional impairment, the remediation of which is important for successful therapeutic intervention. We assessed a 22q11.2DS mouse model (Df(h22q11)/+) on a touchscreen rodent continuous performance test (rCPT) of attention and executive function that is analogous to human CPT procedures. Relative to wild-type littermates, Df(h22q11)/+ male mice showed impaired attentional performance as shown by decreased correct response ratio (hit rate) and a reduced ability to discriminate target stimuli from non-target stimuli (discrimination sensitivity, or d'). The Df(h22q11)/+ model exhibited decreased prefrontal cortical-hippocampal oscillatory synchrony within multiple frequency ranges during quiet wakefulness, which may represent a biomarker of cognitive dysfunction. The stimulant amphetamine (0-1.0 mg/kg, i.p.) dose-dependently improved d' in Df(h22q11)/+ mice whereas the highest dose of modafinil (40 mg/kg, i.p.) exacerbated their d' impairment. This is the first report to directly implicate attentional impairment in a 22q11.2DS mouse model, mirroring a key endophenotype of the human disorder. The capacity of the rCPT to detect performance impairments in the 22q11.2DS mouse model, and improvement following psychostimulant-treatment, highlights the utility and translational potential of the Df(h22q11)/+ model and this automated behavioral procedure.


Assuntos
Atenção/fisiologia , Comportamento Animal/fisiologia , Estimulantes do Sistema Nervoso Central/farmacologia , Disfunção Cognitiva/fisiopatologia , Síndrome de DiGeorge/fisiopatologia , Sincronização de Fases em Eletroencefalografia/fisiologia , Função Executiva/fisiologia , Hipocampo/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Desempenho Psicomotor/fisiologia , Anfetamina/farmacologia , Animais , Atenção/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/administração & dosagem , Disfunção Cognitiva/tratamento farmacológico , Modelos Animais de Doenças , Função Executiva/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Transgênicos , Modafinila/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Desempenho Psicomotor/efeitos dos fármacos
12.
PLoS Biol ; 16(10): e2006229, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30278045

RESUMO

Exposure to man-made electromagnetic fields (EMFs), which increasingly pollute our environment, have consequences for human health about which there is continuing ignorance and debate. Whereas there is considerable ongoing concern about their harmful effects, magnetic fields are at the same time being applied as therapeutic tools in regenerative medicine, oncology, orthopedics, and neurology. This paradox cannot be resolved until the cellular mechanisms underlying such effects are identified. Here, we show by biochemical and imaging experiments that exposure of mammalian cells to weak pulsed electromagnetic fields (PEMFs) stimulates rapid accumulation of reactive oxygen species (ROS), a potentially toxic metabolite with multiple roles in stress response and cellular ageing. Following exposure to PEMF, cell growth is slowed, and ROS-responsive genes are induced. These effects require the presence of cryptochrome, a putative magnetosensor that synthesizes ROS. We conclude that modulation of intracellular ROS via cryptochromes represents a general response to weak EMFs, which can account for either therapeutic or pathological effects depending on exposure. Clinically, our findings provide a rationale to optimize low field magnetic stimulation for novel therapeutic applications while warning against the possibility of harmful synergistic effects with environmental agents that further increase intracellular ROS.


Assuntos
Campos Eletromagnéticos/efeitos adversos , Campos Magnéticos/efeitos adversos , Animais , Crescimento Celular , Proliferação de Células , Criptocromos , Drosophila , Células HEK293 , Humanos , Camundongos , Espécies Reativas de Oxigênio/metabolismo
13.
Sci Rep ; 8(1): 10017, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29968809

RESUMO

Different afferent synapse populations interact to control the specificity of connections during neuronal circuit maturation. The elimination of all but one climbing-fiber onto each Purkinje cell during the development of the cerebellar cortex is a particularly well studied example of synaptic refinement. The suppression of granule cell precursors by X irradiation during postnatal days 4 to 7 prevents this synaptic refinement, indicating a critical role for granule cells. Several studies of cerebellar development have suggested that synapse elimination has a first phase which is granule cell-independent and a second phase which is granule cell-dependent. In this study, we show that sufficiently-strong irradiation restricted to postnatal days 5 or 6 completely abolishes climbing fiber synaptic refinement, leaving the olivo-cerebellar circuit in its immature configuration in the adult, with up to 5 climbing fibers innervating the Purkinje cell in some cases. This implies that the putative early phase of climbing fiber synapse elimination can be blocked by irradiation-induced granule cell loss if this loss is sufficiently large, and thus indicates that the entire process of climbing fiber synapse elimination requires the presence of an adequate number of granule cells. The specific critical period for this effect appears to be directly related to the timing of Purkinje cell and granule cell development in different cerebellar lobules, indicating a close, spatiotemporal synchrony between granule-cell development and olivo-cerebellar synaptic maturation.


Assuntos
Células de Purkinje/fisiologia , Células de Purkinje/efeitos da radiação , Sinapses/fisiologia , Animais , Animais Recém-Nascidos/crescimento & desenvolvimento , Axônios/fisiologia , Cerebelo/crescimento & desenvolvimento , Fenômenos Eletrofisiológicos , Feminino , Gravidez , Ratos , Ratos Wistar
14.
Neural Regen Res ; 13(5): 791-794, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29862999

RESUMO

The retinoid receptor-related orphan receptor alpha (RORα) is thought to act as a constitutive activator of transcription by binding to the ROR response element (RORE) of target genes. Several mouse models in which RORα is defective have revealed the decisive roles of RORα on the development, maturation and neuroprotection of various cerebral regions including the cerebellar and somatosensory systems. We have recently shown that RORα is needed for accurate thalamic sensory system organization and somatosensory cortex development. The phenotype of various RORα deficient mice models (staggerer mutant or mouse lacking RORα in specific somatosensory regions) is, in part, reminiscent of what has been described in mice lacking thyroid hormone triiodothyronine (T3). As in in vitro studies or in other models, our studies strongly suggest that the T3/RORα-pathway, among others, is in part responsible for the staggerer phenotype. We have indeed identified some genes that were both regulated by T3 and RORα and that are known to be implicated in the cerebellar or somatosensory system development. Moreover, several groups have shown that RORα is at the crossroad of many biological processes and pathologies, including psychiatric and degenerative disorders. In particular, defective RORα-signalling has been demonstrated in humans to be associated with the emergence of autistic-like disorders. We believe that determining the appropriate amount of RORα activity could be crucial in detecting and preventing the emergence of specific brain diseases.

15.
PLoS One ; 13(3): e0193607, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29558517

RESUMO

This study addresses the problem of Alzheimer's disease (AD) diagnosis with Electroencephalography (EEG). The use of EEG as a tool for AD diagnosis has been widely studied by comparing EEG signals of AD patients only to those of healthy subjects. By contrast, we perform automated EEG diagnosis in a differential diagnosis context using a new database, acquired in clinical conditions, which contains EEG data of 169 patients: subjective cognitive impairment (SCI) patients, mild cognitive impairment (MCI) patients, possible Alzheimer's disease (AD) patients, and patients with other pathologies. We show that two EEG features, namely epoch-based entropy (a measure of signal complexity) and bump modeling (a measure of synchrony) are sufficient for efficient discrimination between these groups. We studied the performance of our methodology for the automatic discrimination of possible AD patients from SCI patients and from patients with MCI or other pathologies. A classification accuracy of 91.6% (specificity = 100%, sensitivity = 87.8%) was obtained when discriminating SCI patients from possible AD patients and 81.8% to 88.8% accuracy was obtained for the 3-class classification of SCI, possible AD and other patients.


Assuntos
Doença de Alzheimer/diagnóstico , Eletroencefalografia , Adulto , Idoso , Idoso de 80 Anos ou mais , Disfunção Cognitiva/diagnóstico , Diagnóstico Diferencial , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Processamento de Sinais Assistido por Computador , Máquina de Vetores de Suporte
16.
Sci Rep ; 8(1): 3145, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29453455

RESUMO

Subretinal prostheses are designed to restore sight in patients blinded by retinal degeneration using electrical stimulation of the inner retinal neurons. To relate retinal output to perception, we studied behavioral thresholds in blind rats with photovoltaic subretinal prostheses stimulated by full-field pulsed illumination at 20 Hz, and measured retinal ganglion cell (RGC) responses to similar stimuli ex-vivo. Behaviorally, rats exhibited startling response to changes in brightness, with an average contrast threshold of 12%, which could not be explained by changes in the average RGC spiking rate. However, RGCs exhibited millisecond-scale variations in spike timing, even when the average rate did not change significantly. At 12% temporal contrast, changes in firing patterns of prosthetic response were as significant as with 2.3% contrast steps in visible light stimulation of healthy retinas. This suggests that millisecond-scale changes in spiking patterns define perceptual thresholds of prosthetic vision. Response to the last pulse in the stimulation burst lasted longer than the steady-state response during the burst. This may be interpreted as an excitatory OFF response to prosthetic stimulation, and can explain behavioral response to decrease in illumination. Contrast enhancement of images prior to delivery to subretinal prosthesis can partially compensate for reduced contrast sensitivity of prosthetic vision.


Assuntos
Células Ganglionares da Retina/citologia , Percepção Visual , Animais , Sensibilidades de Contraste , Estimulação Elétrica , Ratos , Limiar Sensorial
17.
Cerebellum ; 17(1): 1-3, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29349629

RESUMO

In recent years, there has been tremendous growth in research on cerebellar motor and non-motor functions. Cerebellum is particularly involved in the spectrum of neurodevelopmental diseases. The 8th International Symposium of the Society for Research on the Cerebellum and Ataxia (SRCA) was held in Winnipeg, Manitoba, (Canada) on May 24-26, 2017. The main theme of the 8th International Symposium was "Development of the Cerebellum and Neurodevelopmental Disorders." Advances in genetics, epigenetic, cerebellar neurogenesis, axonogenesis and gliogenesis, cerebellar developmental disorders including autism spectrum disorders (ASD), neuroimaging, cerebellar ataxias, medulloblastoma, and clinical investigation of cerebellar diseases were presented. The goal of this symposium was to provide a platform to discuss cutting-edge knowledge while allowing researchers and trainees the opportunity to share and discuss their front-line research and ideas with others in the field, make connections, and strengthen international collaborations. The Ferdinando Rossi lecture was delivered by Dr. Richard Hawkes on the topic of patterning of the cerebellar cortex. This symposium emphasized the major importance of the involvement of the cerebellum in neurodevelopmental diseases from the clinical, radiological, biological, and genetic standpoint.

18.
Cereb Cortex ; 28(11): 3994-4007, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29040410

RESUMO

The retinoic acid-related orphan receptor alpha (RORα) is well-known for its role in cerebellar development and maturation as revealed in staggerer mice. However, its potential involvement in the development of other brain regions has hardly been assessed. Here, we describe a new role of RORα in the development of primary somatosensory maps. Staggerer mice showed a complete disruption of barrels in the somatosensory cortex and of barreloids in the thalamus. This phenotype results from a severe reduction of thalamocortical axon (TCA) branching and a defective maturation of layer IV cortical neurons during postnatal development. Conditional deletion of RORα was conducted in the thalamus or the cortex to determine the specific contribution of RORα in each of these structures to these phenotypes. This showed that RORα is cell-autonomously required in the thalamus for the organization of TCAs into periphery-related clusters and in the somatosensory cortex for the dendritic maturation of layer IV neurons. Microarray analyses revealed that Sema7a, Neph, and Adcy8 are RORα regulated genes that could be implicated in TCA and cortical maturation. Overall, our study outlines a new role of RORα for the coordinated maturation of the somatosensory thalamus and cortex during the assembly of columnar barrel structures.


Assuntos
Neurônios/fisiologia , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/fisiologia , Córtex Somatossensorial/citologia , Córtex Somatossensorial/crescimento & desenvolvimento , Tálamo/citologia , Tálamo/crescimento & desenvolvimento , Animais , Dendritos , Camundongos Endogâmicos C57BL , Camundongos Mutantes Neurológicos , Vias Neurais/citologia , Vias Neurais/crescimento & desenvolvimento , Neurônios/citologia
19.
Geroscience ; 39(5-6): 499-550, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29270905

RESUMO

A paradox is a seemingly absurd or impossible concept, proposition, or theory that is often difficult to understand or explain, sometimes apparently self-contradictory, and yet ultimately correct or true. How is it possible, for example, that oxygen "a toxic environmental poison" could be also indispensable for life (Beckman and Ames Physiol Rev 78(2):547-81, 1998; Stadtman and Berlett Chem Res Toxicol 10(5):485-94, 1997)?: the so-called Oxygen Paradox (Davies and Ursini 1995; Davies Biochem Soc Symp 61:1-31, 1995). How can French people apparently disregard the rule that high dietary intakes of cholesterol and saturated fats (e.g., cheese and paté) will result in an early death from cardiovascular diseases (Renaud and de Lorgeril Lancet 339(8808):1523-6, 1992; Catalgol et al. Front Pharmacol 3:141, 2012; Eisenberg et al. Nat Med 22(12):1428-1438, 2016)?: the so-called, French Paradox. Doubtless, the truth is not a duality and epistemological bias probably generates apparently self-contradictory conclusions. Perhaps nowhere in biology are there so many apparently contradictory views, and even experimental results, affecting human physiology and pathology as in the fields of free radicals and oxidative stress, antioxidants, foods and drinks, and dietary recommendations; this is particularly true when issues such as disease-susceptibility or avoidance, "healthspan," "lifespan," and ageing are involved. Consider, for example, the apparently paradoxical observation that treatment with low doses of a substance that is toxic at high concentrations may actually induce transient adaptations that protect against a subsequent exposure to the same (or similar) toxin. This particular paradox is now mechanistically explained as "Adaptive Homeostasis" (Davies Mol Asp Med 49:1-7, 2016; Pomatto et al. 2017a; Lomeli et al. Clin Sci (Lond) 131(21):2573-2599, 2017; Pomatto and Davies 2017); the non-damaging process by which an apparent toxicant can activate biological signal transduction pathways to increase expression of protective genes, by mechanisms that are completely different from those by which the same agent induces toxicity at high concentrations. In this review, we explore the influences and effects of paradoxes such as the Oxygen Paradox and the French Paradox on the etiology, progression, and outcomes of many of the major human age-related diseases, as well as the basic biological phenomenon of ageing itself.


Assuntos
Adaptação Fisiológica , Envelhecimento/genética , Dieta Rica em Proteínas/estatística & dados numéricos , Hipercolesterolemia/epidemiologia , Estresse Oxidativo/fisiologia , Oxigênio/metabolismo , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/fisiologia , Feminino , França , Radicais Livres/metabolismo , Avaliação Geriátrica , Humanos , Masculino , Pessoa de Meia-Idade , Medição de Risco
20.
Front Aging Neurosci ; 9: 295, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29033825

RESUMO

Anxiolytic drugs are widely used in the elderly, a population particularly sensitive to stress. Stress, aging and anxiolytics all affect low-frequency oscillations in the hippocampus and prefrontal cortex (PFC) independently, but the interactions between these factors remain unclear. Here, we compared the effects of stress (elevated platform, EP) and anxiolytics (diazepam, DZP) on extracellular field potentials (EFP) in the PFC, parietal cortex and hippocampus (dorsal and ventral parts) of adult (8 months) and aged (18 months) Wistar rats. A potential source of confusion in the experimental studies in rodents comes from locomotion-related theta (6-12 Hz) oscillations, which may overshadow the direct effects of anxiety on low-frequency and especially on the high-amplitude oscillations in the Mu range (7-12 Hz), related to arousal. Animals were restrained to avoid any confound and isolate the direct effects of stress from theta oscillations related to stress-induced locomotion. We identified transient, high-amplitude oscillations in the 7-12 Hz range ("Mu-bursts") in the PFC, parietal cortex and only in the dorsal part of hippocampus. At rest, aged rats displayed more Mu-bursts than adults. Stress acted differently on Mu-bursts depending on age: it increases vs. decreases burst, in adult and aged animals, respectively. In contrast DZP (1 mg/kg) acted the same way in stressed adult and age animal: it decreased the occurrence of Mu-bursts, as well as their co-occurrence. This is consistent with DZP acting as a positive allosteric modulator of GABAA receptors, which globally potentiates inhibition and has anxiolytic effects. Overall, the effect of benzodiazepines on stressed animals was to restore Mu burst activity in adults but to strongly diminish them in aged rats. This work suggests Mu-bursts as a neural marker to study the impact of stress and DZP on age.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...